Fine Motor Development Chapter 11

"Typically, fine movement involves the coordination of the use of the eyes and hands together" . . . But what about the child who cannot see, or the soccer player requiring fine motor control of the foot?

Fine Motor Movement

- Movements that are predominantly produced by the small muscles or muscle groups in the body
- Does fine motor movement involve hands and eyes only?
- Non-hand fine motor movement can be developed

Assessing Fine Movement

- Tools for assessment of fine motor development have many problems
 - Some lack clear performance criteria
 - Some contain incomplete and/or "old" norms

Assessing Fine Movement

- Noller and Ingrisano (1984) conducted a study to determine the attainment of various fine motor skills
 - Emergence times are similar to the established norms
 - Achievement times varied considerably to the established norms

Assessing Fine Movement

- Conclusion: All the data available are fine for rough indications of fine motor emergence and attainment
- However, there are still many discrepancies

- Manipulation is the use of the hands
 - Involves intrinsic and extrinsic movements
 - Intrinsic movements are coordinated movements of the individual digits used to manage an object in the hand
 - Handwriting—writer manages the pen to write a letter
 - Extrinsic movements displace the hand and the in-hand object via upper limb movement
 - Handing the written message to a coworker

Example of Intrinsic Movement ~ Handwriting

- Simple synergies involves all hand movements in which the action of all the digits is similar
 - Squeezing a rubber ball
 - Pinching
 - Dynamic tripod

- Reciprocal synergies are combinations of movements involving the thumb and other involved digits reciprocally and simultaneously interacting to produce relatively dissimilar movements
 - Flexion of the fingers as the thumb extends
 - Twiddling of the thumbs
 - Rolling a pencil between thumb and forefinger

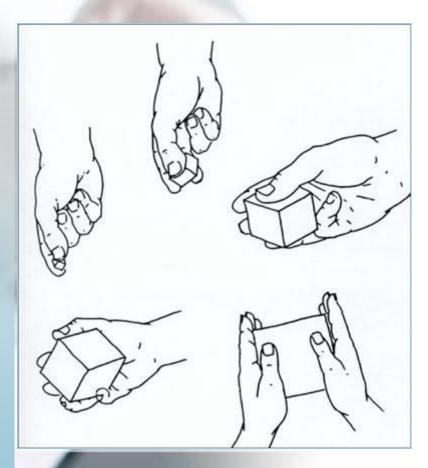
- Sequential patterns involve a specific sequence of hand movements toward a goal
 - These patterns are not simultaneous
 - Tying a knot
 - Unscrewing a lid
 - Squeezing a tube of toothpaste

- Prehension applies specifically to the act of grasping
 - Approaching, grasping, releasing
- This is a critical hand movement for later movement development
- Classic study: Halverson (1931)
 described the early reaching and
 grasping of 4- to 13-month old infants

- Halverson chronicled the process of prehension
 - The object is visually located
 - The object is approached
 - The object is grasped
 - The child disposes of the object by releasing it

- Halverson recorded 3 basic methods of reaching
 - Sweeping the hand and arm in a backhand manner toward the object
 - Indirect or circuitous method which involves approaches from various angles
 - Direct reach, evident in motorically mature children

- Halverson noted a proximodistal pattern of development
 - Movement ability progressed in a direction away form the body
- Halverson observed a gradual increase in the movement's speed and efficiency with age (16-52 weeks)


4 months	Incapable of making contact with an object	
5 months	Ability to contact crudely; inability to acquire the object	
5 months	"primitive squeeze"	
6 months	"squeeze grasp" - clumsy and unsuccessful	
7 months	"hand grasp"	
7 months	Thumb opposition	
8 months	"superior palm grasp"	
9 months	"inferior forefinger grasp"	
13 months	"forefinger grasp"	
13 months	"superior forefinger grasp"	

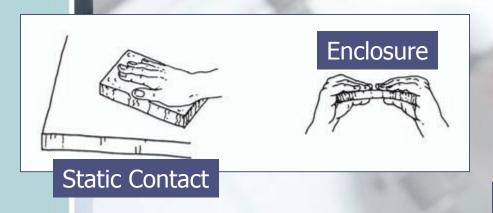
Alternate View of the Development of Prehension

- Newell, Scully, Tenenaum, and Hardiman (1989)
 - Adult and child reaching and grasping were examined
 - Explained some concerns for methods used in Halverson study

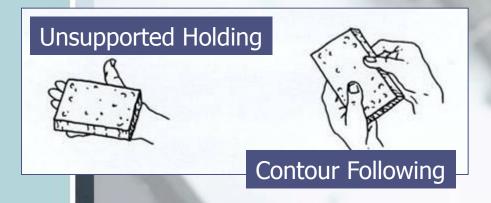
Alternate View of the Development of Prehension

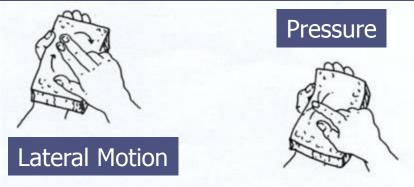
- Object size plays a role in grip patterns
- In contrast to Halverson, developmental progression may be more flexible than previously noted

Alternate View of the Development of Prehension


- Other researchers have observed
 - Children open their hands wider than adult reachers
 - Children are more variable in their reachto-grasp
 - Grip formation is not mature by 6-7 yr
 - Children rely on vision in reaching

Is Halverson's work a "reflection of the narrow range of constraints tested" or "a rigid sequence of biological or cognitive prescriptions for action"?


- Haptic perception is the ability to glean information from objects by manipulation
 - Temperature
 - Size
 - Texture
 - Weight
 - Shape

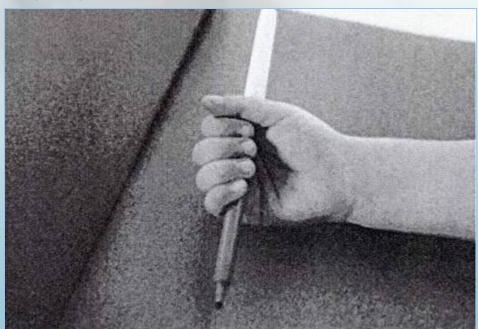

- The emergence of haptic perception appears to be closely linked to one's ability to perform certain hand movements
 - Exploratory procedures ~ lateral,
 alternate rubbing motions to determine
 texture, unsupported holding to determine
 weight

- Manipulation is integral to the emergence of haptic ability
- Haptic sensitivity occurs in a predictable sequence

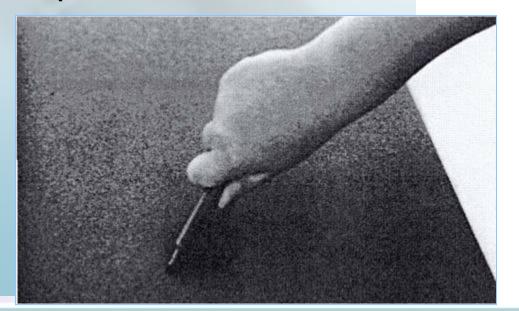
Optimal hand movement patterns for acquiring object properties

Birth – 3 months	4 months	9-10 months
•Babies clutch object with fist	Wider variety of hand movements	•Two-handed manipulation easy
Palmar graspSufficient to	Visual control of manipulation	(baby can sit)One hand can
detect haptic qualities of an object	Exchange object from hand to hand	position while the other hand explores

Bushnell & Boudreau (1993) ~ 3 phases of object manipulation

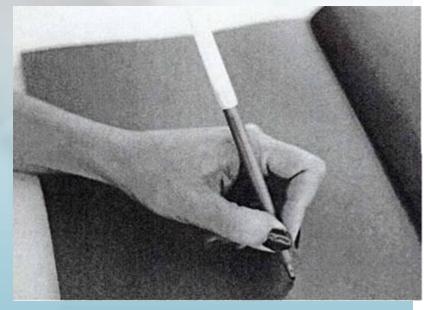

Writing

- There is a sequential development of movement technique for manipulation of writing or drawing implements (pencils, crayons)
- The development is universal
- The rate of acquisition of the stages of movement ability varies


Writing

- Develops between 2 to 6 years of age
- As writing ability develops, the hand moves closer to the tip of the pencil
- At first, children hold the pencil away from the tip and movements come from the shoulder
- Later, the elbow produces more movement
- Finally, the fingers and thumb gain control (dynamic tripod)
- Mature writing pattern observed by 7 yr

- Supinate grasp
- 1st stage in holding a writing implement
- Involves all four fingers and thumb wrapped around pencil in a fist


- Pronate grasp
- 2nd stage in holding a writing implement
- Palm-down hand position

The dynamic tripod

The third and final stage of holding writing implement

Present by age 7 yr

- As children advance in handwriting there is an increase in
 - Upright posture
 - Trunk and hand stability
 - Hand is better positioned in line with the forearm
 - Forward lean of trunk

- Yakimishyn & Magill-Evans (2002)
 observed children had a more mature
 manner in holding a writing implement
 if the object was short (crayon vs. long
 pencil)
- These researchers also found a more mature pattern of writing when children wrote on a vertical surface (easel)

Cross-cultural Comparison of the Dynamic Tripod

- Japanese children attain the dynamic tripod by 35 months
 - Children learn to use chopsticks early in life
- British children attain the dynamic tripod at age 48 months
- Cultural factors?

Cross-cultural Comparison of the Dynamic Tripod

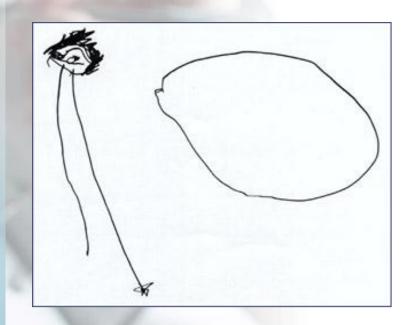
Stage 1	Palmar grasp	
	Movement from elbow and shoulder	
Stage 2	Incomplete tripod	
Stage 3	Tripod position with extensive wrist movement No finger coordination	
Stage 4	Dynamic tripod Finger coordination	

Developmental writing stages in Japanese children

Could the use of convenient devices (electric toothbrushes, pencil sharpeners, push-button devices) decrease cultural differences in the stages and ages at which a child learns to manipulate a writing implement?

The Dynamic Tripod From 6 to 14 years

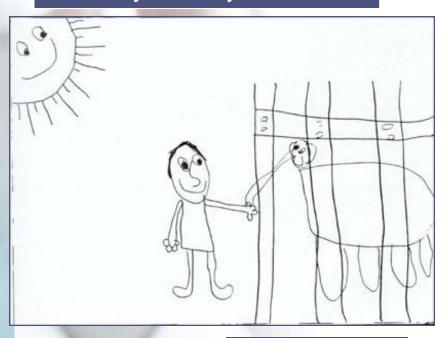
- The age of changing from the immature to mature characteristics of both the finger flexion and the forearm positioning was found to be approximately 10 years
- In general, the dynamic tripod does continue to be refined between the ages of 6 and 14 years


- Children learn to draw before they attempt to form the letters of the alphabet
- Drawing stages follow a definite progression, but the specific age norms for drawing are not easy to determine

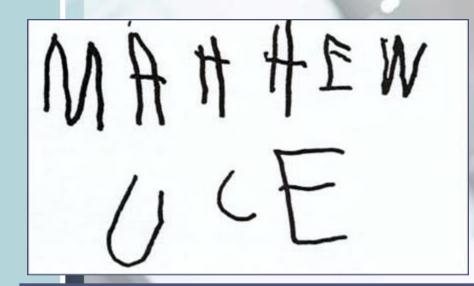
- Drawing is partly a function of mental age
 - Children with brain injury (lower mental age) will have difficulty drawing compared to peers
 - Children with lower mental age display immature drawings because the brain sends conflicting stimuli to the hand

- Four major stages
 of drawing
 development as
 determined by the
 product of the act of
 drawing
- Stage 1: scribbling stage
 - May occur by accident

- Stage 2: combine stage
 - Construction of diagrams, geometric figures, and combinations of shapes
 - Eventually shapes
 form some familiar
 object; a house, etc.



- Stage 3: aggregate stage
- Child combines diagrams and figures in combinations of three or more
 - More complex drawings can be created


- Stage 4: pictorial stage
- Pictures are drawn with more precision and complexity
- Compare this human form to the previous drawing

Drawn by an 8-9 year-old child

- Home environment is one of the most important factors affecting the level of drawing development
 - Child observes others drawing
 - Availability of writing implements
 - Drawing skills develop earlier

Handwriting: The Product

Letters a child forms when approximately 4 years old Uppercase, large, unorganized

- Handwriting is preceded by the initial attempt at drawing
- The letters a child forms when 4 years of age are often uppercase, large, and unorganized on a page

Handwriting: The Product

- By 5 yr., the child has mastered name printing
- By 6 yr., child prints large letters, but smaller than a 5 year old
- By age 7yr., children are able to write much smaller letters and can print lowercase letters effectively

Handwriting: The Product

- Children in the 2nd grade can master uppercase letters and printing their name
 - Lowercase letters continue to be difficult even into the 3rd grade
- Spacing between letters is not mastered until the child is 9 years old

Finger Tapping

- An important indicator of fine motor coordination
- Used to diagnose neurological difficulty

Finger Tapping

- Finger-tapping tasks are categorized into repetitive and successive movements
 - Repetitive repetitions of the same movement (thumb and finger tapping together) as rapidly as possible
 - Successive a series of similar movements performed rapidly (thumb then finger tapping)

Finger Tapping

- Finger tapping improves with age
- Girls out-perform boys (kindergarten through 2nd grade)
- Speed and coordination of performance occur over the first years of life
 - Plateaus at 8 to 10 years of age
 - Training increases tapping speed, not endurance

Fine Motor Slowing in Late Adulthood

- Speed and coordination of many fine motor movements plateau in early life
- No major motor changes are observed until late adulthood
 - Degeneration of neurons
 - Arthritis
 - Osteoporosis
 - Reversal of the proximodistal progression

Fine Motor Slowing in Late Adulthood

- Exceptions
 - Physically fit and/or healthy adults maintain their speed of movement
 - Practice inhibits the slowing process
 - Movement involved in the creation of vocal responses shows fewer signs of slowing

Salthouse, 1985)

Fine Motor Slowing in Late Adulthood

- Fine motor changes are noted in the later stages of life
- There is a reversal of the proximodistal trend in development
- Neural degeneration may contribute to slowing and decreased coordination
- Physical fitness and practice can attenuate or eliminate the slowing process

"a life of physical activity appears to play a more dominant role in simple and discriminate reaction time and movement time and age"

Spirduso, 1977, p.435